

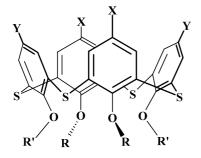
TETRAHEDRON LETTERS

Tetrahedron Letters 44 (2003) 7167-7170

Upper rim substituted thiacalix[4]arenes

Oleg Kasyan,^a Dariusz Swierczynski,^b Andrew Drapailo,^a Kinga Suwinska,^b Janusz Lipkowski^b and Vitaly Kalchenko^{a,*}

^aInstitute of Organic Chemistry, National Academy of Sciences of Ukraine, 02094, Kyiv-94, Murmanskaya str. 5, Ukraine ^bInstitute of Physical Chemistry, Polish Academy of Sciences, 01-224, Kasprzaka, 44, Warsaw, Poland


Received 14 March 2003; revised 15 July 2003; accepted 25 July 2003

Abstract—The synthesis and structure of new tetrahydroxythiacalix[4]arenes, existing in the *cone* conformation and possessing reactive bromide, chloromethyl or diorganylphosphoryl groups on the upper rim of the macrocycle are described. The molecular structure of tetrakis(diisopropoxyphosphorylmethyl)thiacalix[4]arene was examined by X-ray crystallography. © 2003 Elsevier Ltd. All rights reserved.

Thiacalix[4]arenes, new members of the well-known class of calix[4]arenes, ¹⁻⁴ have been intensively studied over the last seven years. ⁵⁻⁹ The presence of four bridging sulfur atoms in the macrocyclic skeleton of the thiacalixarenes, instead of four methylene groups in the classical calix[4]arenes, opens new prospects for the design of host-molecules. The introduction of the sulfur atoms increases the size of the molecular cavity⁷ and enables supplementary modification of the macrocyclic skeleton by oxidation of the sulfide bridges to sulfoxides or sulfones. ¹⁰⁻¹² These changes in the framework of the macrocycle, together with the potential, that all calixarenes can be functionalized on the upper and (or) lower rim, make thiacalix[4]arenes attractive as molecular bases for obtaining high-performance receptors of molecules and ions.

However, the use of thiacalix[4]arenes in supramolecular chemistry has been limited by the absence of reasonable methods for the functionalization of the macrocycle upper rim.

At the present time there are just a few examples of *cone*-shaped upper rim functionalized thiacalix[4]arenes (Scheme 1). De-*tert*-butylation of the parent *tert*-butylthiacalix[4]arene 1 with AlCl₃ results in formation of thiacalix[4]arene 2, possessing hydrogen atoms in the *para*-positions of the benzene rings.⁷ *ipso*-Sulfonation of *tert*-butylthiacalix[4]arene 1 in concentrated sulfuric acid leads to the water soluble thiacalix[4]arenetetrasulfonate 3.^{13,14} Regioselective bromination of 25,27-dipropoxythiacalix[4]arene with bromine results in formation of the dipropoxy-dibromothiacalix[4]arene 4.¹⁵

Structure	X	Y	R	R'
1	<i>t-</i> Bu	<i>t-</i> Bu	Н	Н
2	Н	H	Н	Н
3	SO_3H	SO ₃ H	Н	Н
4	Br	Н	Н	<i>n</i> -Pr
5	Br	Br	Н	<i>n-</i> Pr

1-5

Scheme 1.

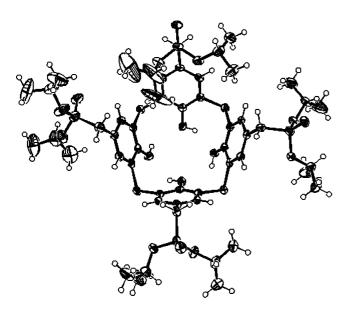
Keywords: thiacalixarenes; Arbuzov reaction; organophosphorus compounds; X-ray analysis.

^{*} Corresponding author. Tel.: +38-044-559-06-67; fax: 380-44-573-26-43; e-mail: vik@bpci.kiev.ua

Further bromination of **4** gives dipropoxy-tetrabromothiacalix[4]arene **5**. Compounds **1**–**5** exist in the *cone* conformation, where the benzene rings of the macrocycle skeleton are oriented to one side with respect to the main plane of the macrocycle, formed by the four sulfur atoms. Tetrapropoxy-tetrabromothiacalix[4]arene was obtained by the *O*-propylation of **5**. However, during the propylation, the *cone* conformation was disturbed and the *1*,3-alternate conformer was obtained, where the benzene rings are alternatively oriented upward and downward from the main plane.

In this article we present a series of new tetrahydroxythiacalix[4]arenes existing in the rational (from the point of view of the Host–Guest chemistry) *cone* conformation, and possessing reactive bromide, chloromethyl or diorganylphosphoryl groups at the upper rim of the macrocycle. An improved method for the synthesis of tetrahydroxythiacalix[4]arene 2 is also reported.¹⁶

The main method of stabilization of thiacalix[4]arenes in the *cone* conformation consists of the formation of a system of intramolecular hydrogen bonds at the lower rim of the macrocycle as in tetrahydroxythiacalixarenes 1–3^{7,14} and 25,27-dihydroxy-26,28-dialkoxythiacalix[4]arenes 4–5.¹⁵ In our work, tetrahydroxythiacalix[4]arene 2 was chosen as the platform for the synthesis of *cone*-shaped, upper rim substituted derivatives.


The bromination of tetrahydroxythiacalix[4]arene **2** (Scheme 2) with NBS (acetone, 4 h, rt) gave tetrahydroxy-tetrabromothiacalix[4]arene **6** in 90% yield (colorless crystals, mp>400°C, decomp.). The bromine functionality allows further functionalization of the upper rim of the macrocycle by replacement with different nucleophilic groups in the presence of metal catalysts. ²⁰

Chloromethyl groups at the calixarene upper rim possess higher reactivity in reactions with nucleophilic reagents. These groups were introduced on the upper rim by reaction of the thiacalix[4]arene 2 (Scheme 2) with an excess of methyl chloromethyl ether and tin tetrachloride (chloroform, 4.5 h, rt). Tetrahydroxy tetrakis(chloromethyl)thiacalix[4]arene 7 was obtained in 72% yield as a colorless crystalline substance. 24

The synthetic potential of chloromethylthiacalixarene 7 was demonstrated by an Arbuzov reaction with esters of P(III) phosphorus acids (CHCl₃, 4 h, rt, double excess of the phosphorylating agent). Tetraphosphorylated derivatives **8a–f** (Scheme 3) were obtained in good yields.²⁵ The Greence in the reactivities of thiacalixarene 7 (CHCl₃, 4 h, rt) and tetrakis(chloromethyl)calix[4]arene,^{21,22} which reacts with trialkylphosphites only under harsh conditions (long heating in solution with trialkylphosphite at 160–180°C) should be noted.

Scheme 2.

R=R'=OEt(a), Oi-Pr(b), OBu(c), Bu(d), Ph(e); R=Oi-Pr, R'=Ph(f)

Figure 1. Top view of the X-ray crystal structure of tetra-kis(diisopropoxyphosphorylmethyl)tetrahydroxy - thiacalix[4]-arene **8b**.

The ¹H NMR spectra of the *para*-substituted calixarenes **6–8** showed a singlet for the aromatic protons (7.28–7.77 ppm), a singlet for the *OH* groups (9.21–9.45 ppm), a singlet for the CH_2Cl groups (2.88 ppm) and a doublet for the CH_2P groups (2.80–3.42 ppm, $J_{\rm PH}$ 12.2–21.3 Hz). The low field position of the signals of the hydroxyl groups indicates the presence of an intramolecular hydrogen bonded network, typical for the *cone* conformation. The *cone* conformation of tetrakis(diisopropoxy)phosphorylmethylthiacalix[4]arene **8b** was confirmed by an X-ray crystallographic analysis (Fig. 1).²⁶

A suitable monocrystal of **8b** was obtained by crystallization from *n*-pentane. The average C–S distances are 1.786 Å, and the average C–S–C angles are 102.0°; C–P, 1.790 Å; C–C(P), 1.515 Å; P=O, 1.467 Å; P–O, 1.570 Å; O–C, 1.467 Å.

In conclusion, the first efficient synthesis of tetrakis(chloromethyl)tetrahydroxythiacalix[4]arene stabilized in the *cone* conformation by a network of intramolecular hydrogen bonds at the macrocylic lower rim, has been devised. The utility of the compound was demonstrated by the synthesis of *cone*-shaped tetraphosphoryl derivatives—promising receptors for metal cations or organic molecules.

Acknowledgements

The authors of the Kiev team thank the Science and Technology Center in Ukraine for support of the work through Grant RUS-09.

References

- Gutsche, C. D. In *Calixarenes Revisited*; Stoddart, J. F., Ed.; RSC: Cambridge, 1998.
- Böhmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713–745
- 3. For a review on thiacalixarenes, see: Hosseini, M. W. In *Calixarenes* 2001; Asfari, Z.; Boehmer, V.; Harrowfield, J.; Vicens, J., Eds.; Kluwer Academic Publishers: Dodrecht, 2001.
- 4. Iki, N.; Miyano, S. J. Inclusion Phenom. Macrocyclic Chem. **2001**, 41, 99–105.
- 5. Kumagai, H.; Hasegawa, M.; Miyanari, S.; Sugawa, Y.; Sato, Y.; Hori, T.; Ueda, S.; Kamiyama, H.; Miyano, S. *Tetrahedron Lett.* **1997**, *38*, 3971–3972.
- Sone, T.; Ohba, Y.; Moriya, K.; Kumada, H.; Ito, K. Tetrahedron 1997, 53, 10689–10698.
- Akdas, H.; Bringel, L.; Graf, E.; Hosseini, M. W.; Mislin, G.; Pansanel, J.; De Cian, A.; Fischer, J. Tetrahedron Lett. 1998, 39, 2311–2314.
- Antipin, I. S.; Stoikov, I. I.; Gubaidullin, A. T.; Litvinov, I. A.; Weber, D.; Habicher, W. D.; Konovalov, A. I. Tetrahedron Lett. 1999, 40, 8461–8464.
- 9. Lhotak, P.; Himl, M.; Pakhomova, S.; Stibor, I. *Tetrahedron Lett.* **1998**, *39*, 8915–8918.
- Iki, N.; Kumagai, H.; Morohashi, N.; Ejima, K.; Hasegawa, M.; Miyanari, S.; Miyano, S. Tetrahedron Lett. 1998, 39, 7559–7562.
- Mislin, G.; Graf, E.; Hosseini, M. W.; De Cian, A.; Fischer, J. Chem. Commun. 1998, 1345–1346.
- Mislin, G.; Graf, E.; Hosseini, M. W.; De Cian, A.; Fischer, J. *Tetrahedron Lett.* 1999, 40, 1129–1132.
- 13. Iki, N.; Suzuki, T.; Koyama, K.; Kabuto, C.; Miyano, S. *Org. Lett.* **2002**, *4*, 509–512.
- Iki, N.; Fujimoto, T.; Miyano, S. Chem. Lett. 1998, 625–626.
- Lhotak, P.; Himl, M.; Stibor, I.; Sykora, J.; Cisarova, I. Tetrahedron Lett. 2001, 42, 7107–7110.
- 16. The following method was used for the synthesis of thiacalix[4]arene 2. tert-Butylthiacalix[4]arene 1 (30.0 g, 41.67 mmol) was dissolved in toluene (900 ml) with heating. After cooling down to rt, phenol (40.0 g, 422.53 mmol) was added. Then, AlCl₃ (200.0 g, 1500.00 mmol) was added over 3 min. The mixture was refluxed for 5 h (lit. 7 days). The reaction mixture was cooled, and poured into 2N HCl (2.5 L) with additional stirring for 24 h. The precipitate was filtered, washed with chloroform (3×50 ml) and acetone (2×50 ml). The filtered product was dried under vacuum (0.01 mmHg) at 220°C until sublimation of the volatile aluminium salts was complete. Compound **2** (18.0 g, 87%), (lit. 51%)⁷ was obtained as a beige crystalline product. Mp 300-305°C (lit. 298–300°C).⁷ ¹H NMR (300 MHz, CDCl₃): δ 6.76 (t, 4H, J=7.7 Hz, H-arom.), 7.60 (d, 8H, J=7.7 Hz, Harom.), 9.45 (s, 4H, OH). Anal. calcd for $C_{24}H_{16}O_4S_4,\,\%$: C, 58.10; H, 3.20; S, 25.80. Found, %: C, 58.00; H, 3.40; S, 25.50.
- 17. Wong, M. S.; Li, Z. H.; Kwok, C. C. Tetrahedron Lett. **2000**, 41, 5719–5724.
- 18. Larsen, M.; Jorgensen, M. J. Org. Chem. 1996, 61, 6651–6655.
- 19. NBS (2.9 g, 16.13 mmol) was added to a suspension of 2 (1.0 g, 2.02 mmol) in dry acetone (200 ml). The reaction

- mixture was stirred for 4 h at rt. The residue was filtered, washed twice with acetone and dried for 1 h under vacuum (0.01 mmHg) at 150°C. Compound **6** (1.5 g, 90%) was obtained as a colorless crystalline product. (The use of methyl ethyl ketone as solvent resulted in a lower yield, 51%). Mp>400°C (decomp.). ¹H NMR (300 MHz, DMSO- d_6): δ 7.77 (s, 8H, H-arom.). Anal. calcd for $C_{24}H_{12}Br_4O_4S_4$, %: C, 35.49; H, 1.49; Br, 39.35; S, 15.79. Found, %: C, 35.26; H, 1.41; Br, 39.26; S, 15.79.
- Kalchenko, V.; Atamas, L.; Pirozhenko, V.; Markovsky, L. Zh. Obshch. Khim. 1992, 62, 2623.
- Almi, M.; Arduini, A.; Casnati, A.; Pochini, A.; Ungaro, R. *Tetrahedron* 1989, 45, 2177.
- Arimura, T.; Nagasaki, T.; Shinkai, S.; Matsuda, T. J. Org. Chem. 1989, 54, 3766.
- Lian-Min, Y.; Yan-Song, Z.; Zhi-Tang, H. Synth. Commun. 1999, 29, 4451–4460.
- 24. SnCl₄ (42.0 g, 161.29 mmol) and methyl chloromethyl ether (25.9 g, 322.58 mmol) were added to a suspension of 2 (4.0 g, 8.07 mmol) in dry chloroform (160 ml). The reaction mixture was stirred for 5 h at rt and filtered. Distilled water (200 ml) was added to the filtrate and the separated aqueous layer was washed with chloroform (4×75 ml). The combined organic fractions were washed with 4N HCl (3×100 ml), dried over Na₂SO₄ and evaporated. Chloroform (20 ml) was added and the crystalline residue was filtered, washed with chloroform (2×10 ml) and dried for an hour under vacuum (0.01 mmHg) at 100°C. Compound 7 (5.0 g, 90%) was obtained as a colorless crystalline product. Mp>240°C (decomp.). ¹H NMR (300 MHz, CDCl₃): δ 4.44 (s, 8H, CH₂), 7.67 (s, 8H, H-arom.), 9.44 (s, 4H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 44.65 (s, CH₂), 120.88 (s, C-arom.), 131.26 (s, C-arom.), 139.54 (s, C-arom.), 157.94 (s, C-arom.). Anal. calcd for C₂₈H₂₀Cl₄O₄S₄, %: C, 48.70; H, 2.92; Cl, 20.54; S, 18.57. Found, %: C, 48.63; H, 3.00; Cl, 20.13; S, 18.63.
- 25. General procedure. The phosphorylating agent (triethyl phosphite, triisopropyl phosphite, tributyl phosphite, dibutyl-isopropyl phosphinite, diphenyl-isopropyl phosphinite or diisopropyl-phenyl phosphonite, accordingly) (5.80 mmol) was added to a solution of chloromethylthiacalix[4]arene 7 (0.5 g, 0.73 mmol) in dry chloroform (50 ml) with stirring. The reaction mixture was stirred at rt for 4 h. The solvent was removed under vacuum (10 mmHg) at rt. Hexane (20 ml) was added to the residue and the precipitate was (quickly) filtered and washed twice with hexane (2×10 ml) and water (2×10 ml). The obtained product was dried for 2 h under vacuum (0.01 mmHg) at 50°C. **8a**. (0.56 g, 71%). Mp 117–120°C. ¹H NMR (300 MHz, CDCl₃): δ 1.24 (t, 24H, J=7.0 Hz, CH_3), 2.92 (d, 8H, J=21.3 Hz, CH_2 -P), 4.01 (m, 16H, CH₂-O), 7.55 (s, 8H, H-arom.), 9.38 (s, 4H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 16.39 (d, J=5.0 Hz, P-O- CH_2 - CH_3), 32.30 (d, J = 140 Hz, P- CH_2), 62.29 (d, J = 6.4Hz, P-O-CH₂), 120.86 (s, C-arom.), 125.21 (d, J=8.9 Hz, C-arom.), 140.35 (d, J=5.6 Hz, C-arom.), 156.86 (s, C-arom.); ³¹P NMR (121 MHz, CDCl₃): δ 25.7. Anal. calcd for C₄₄H₆₀O₁₆P₄S₄, %: C, 48.17; H, 5.51; P, 11.29; S, 11.69. Found, %: C, 47.90; H, 5.31; P, 11.26; S, 11.48. **8b.** (0.72 g, 82%). Mp 107–110°C. ¹H NMR (300 MHz, CDCl₃): δ 1.12 and 1.25 (two d, 48H, J=6.3 Hz,
- diastereotopic CH₃ groups), 2.88 (d, 8H, J=21.3 Hz, CH_2 -P), 4.55 (m, 8H, CH-O), 7.55 (d, 8H, J=2.6 Hz, H-arom.), 9.30 (s, 4H, OH); ³¹P NMR (121 MHz, CDCl₃): δ 23.7. Anal. calcd for $C_{52}H_{76}O_{16}P_4S_4$, %: C, 51.65; H, 6.33; P, 10.25; S, 10.61. Found, %: C, 51.40; H, 6.17; P, 10.06; S, 10.50. **8c**. (0.48 g, 50%). Mp 101–105°C. ¹H NMR (300 MHz, CDCl₃): δ 0.80 (t, 24H, J = 6.8 Hz, CH_3), 1.30 (m, 16H, CH_2 - CH_3), 1.54 (m, 16H, CH_2 - CH_2 - CH_3), 2.95 (d, 8H, J=21.3 Hz, CH_2 -P), 3.95 (m, 16H, CH₂-O), 7.56 (s, 8H, H-arom.), 9.41 (s, 4H, OH). ³¹P NMR (121 MHz, CDCl₃): δ 25.9. Anal. calcd for $C_{60}H_{92}O_{16}P_4S_4$, %: C, 54.53; H, 7.02; P, 9.38; S, 9.71. Found, %: C, 54.23; H, 6.97; P, 9.26; S, 9.70. 8d. (0.78 g, 90%). Mp 154–157°C. 1 H NMR (300 MHz, CDCl₃): δ 0.88 (t, 24H, J = 7.0 Hz, CH₃), 1.10–1.80 (m, 48H, CH_2 - CH_2 - CH_2 - CH_3), 2.88 (d, 8H, J=12.2 Hz, CH_2 -P), 7.57 (s, 8H, H-arom.), 9.41 (s, 4H, OH). ³¹P NMR (121 MHz, CDCl₃): δ 46.4. Anal. calcd for C₆₀H₉₂O₈P₄S₄, %: C, 60.38; H, 7.77; P, 10.38; S, 10.75. Found: C, 60.47; H, 7.97; P, 10.12; S, 10.37. **8e**. (0.88 g, 90%). Mp 182–185°C. ¹H NMR (300 MHz, CDCl₃): δ 3.42 (d, 8H, J = 13.4 Hz, CH₂-P), 7.38 (m, 32H, H-arom.), 7.62 (m, 16H, Harom.), 9.21 (s, 4H, OH); 13 C NMR (75 MHz, CDCl₃): δ 36.38 (d, J = 66.3 Hz, P-CH₂), 120.61 (s, C-arom.), 124.66 (d, J=5.1 Hz, C-arom.), 128.52 (d, J=10.3 Hz, Carom.), 130.92 (d, J=7.6 Hz, C-arom.), 131.93 (s, Carom.), 132.33 (s, C-arom.), 140.50 (s, C-arom.), 156.50 (s, C-arom.); ³¹P NMR (121 MHz, CDCl₃): δ 29.4. Anal. calcd for C₇₆H₆₀O₈P₄S₄, %: C, 67.44; H, 4.47; P, 9.15; S, 9.48. Found, %: C, 67.48; H, 4.48; P, 9.10; S, 9.37. MS (FAB) m/z 1353 ([M⁺]). **8f**. (0.79 g, 85%). Mp 128–130°C. ¹H NMR (300 MHz, CDCl₃): δ 1.14 and 1.28 (2 d, 24H, J=6.0 Hz, diastereotopic CH_3 groups), 3.01 (d, 8H, J = 17.2 Hz, CH_2 -P), 4.50 (m, 4H, CH-O), 7.28–7.63 (m, 28H, H-arom.), 9.30 (s, 4H, OH); ¹³C NMR (75 MHz, CDCl₃): δ 23.94 and 24.40 (2 s, diastereotopic CH_3 groups), 36.96 (d, J=96.0 Hz, P-CH₂), 70.30 (s, CH-O), 120.50 (s, C-arom.), 125.05 (s, C-arom.), 128.33 (d, J=11.4 Hz, C-arom.), 129.85 (s, C-arom.), 131.71 (d, J=8.4Hz, C-arom.), 132.29 (s, C-arom.), 140.41 (s, C-arom.), 156.48 (s, C-arom.); 31 P NMR (121 MHz, CDCl₃): δ 37.9. Anal. calcd for $C_{64}H_{68}O_{12}P_4S_4$, %: C, 59.99; H, 5.35; P, 9.67; S, 10.01. Found, %: C, 59.30; H, 4.98; P, 9.56; S,
- 26. Crystal data for compound **8b**: $C_{52}H_{76}O_{16}P_4S_4$, M=1209.25, monoclinic space group P-1, a = 10.6680(4), b =15.7287(6), c = 20.3154(9)Ă, $\alpha = 93.376(1)$, $\beta = 103.361(1), \ \gamma = 106.842(1)^{\circ}, \ V (\text{Å}^3) = 3145.2(2), \ Z = 2,$ D_x (mg m⁻³)=1.277, μ (mm⁻¹)=0.314, radiation type: MoK α ; wavelength = 0.71073 Å, temperature = 120(2) K, F(000) = 1280. Diffractometer Nonius Kappa CCD, crystal form: plate; crystal size: 0.20×0.15×0.05 mm; crystal color: colorless; No. of measured reflections = 12915, θ range = 1.018-20.79°. Refinement method: full-matrix least-squares on F^2 ; structure solution: SHELXS-97 (Sheldrick, 1990); structure refinement: SHELXL-97 (Sheldrick, 1997), R(F), $R_w(F^2)$ [I>2 $\sigma(I)$]-0.0513, 0.1077, R(F), $R_w(F^2)$ all data -0.0774, 0.1152. The crystallographic data for the crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 203909.